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The problem of stabilization of steady motions of a nonlinear controlled system in the 

critical case of h zero and k pairs of purely imaginary roots (h > 0, k > 0 are integers) 
is considered. 

A continuo~ control is introduced. The control in question is analytic in the h varia- 
bles corresponding to the zero roots and nonanalytic in the 2k variables corresponding 

to the imaginary roots of the characteristic equation of the linear part of the system. 

The analysis is based on the classical theory of biapunov stability of motion p] and on 
the methods developed in @]. 

1, let us consider the controlled system 

dw/dt = Au + Bu + g (v, u) (1.1) 

Here cut is the (n + h + 2k)- dimensional perturbation vector; IL is the m-dimensional 

control vector, which we assume to be unaffected by interference ; A, B are constant 

matrices of the appropriate dimensions. We assume that all the coefficents of Eq. (1.1) 
are real and that g (uj, u) is a vector function analytic in v and u whose expansion in 

powers of w, u begins in terms of order not lower than the second. 
If the unperturbed motion I/) = O of system (1.1) is not ~ymptotically stable for 

u E 0 , then there arises the problem of stabilization, i.e. the problem of choosing a 
control u = u (w) whose substitution into (1.1) makes the zero solution w = 0 asympto- 

tically stable in the Liapunov sense. 
Let us consider the critical case of h zero and k pairs of purely imaginary roots @}. 

We assume that the h zero roots correspond to h groups of solutions, In this cake a suit- 

able choice of variables allows us to rewrite system (1.1) in the form 

dzJdt = zj (Xi, wi, zj. v, 4, dxJdt = - hi?/i + xi (5i, Yi’ zj, '. u, 

dy,jdt = kizi i- Y, (xi, yip zj, v, U) (1.2) 

dv/dt = A,,v + Bou + Z (aizi + 6,~~) + x cjzj + 61 (zi, ?li, zj, V, U) (1.31 

Were xi, yf, zj are scalar variables ; u is an n-dimensional vector with the components 

Da; ai,bi,cj are n-dimensional constant vectors; A,, B. are constant matrices of order 
n x n al,d n x na , respectively ; $2 is a vector function with the components 9,; the 

ft!: cfions Xi, Yf, Zj, Qa are analytic nonlinearities in x:i, Yi* Zj, v, w; hi/& is irration- 
al; the subscript i runs through the values 1,2,..., k, the subscript i through the values 

i,2,..., h , and the subscript 6 through the values i;2,..., n. 

The stabilization problem for system (1.1) is equivalent to the same problem for Sys- 

tern (1.2), (1.3). 
As we know @I, the system 

dv,‘dt = Aov + Bou (1.4) 
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is stabilizable and admits of the linear control 

I” (V) = P, (i .5), 

The constant matrix P of order m x n must be chosen in such a way that when (1.5) 

is substituted into (1.4) all the eigenvalues of the matrix C = A, -!- &P = const (C = 

= (ei,)) have negative real parts. 
For system (1.2), (1.3) we use a nonanalytic equation of the form 

u (Xi. Yi. zj ,V) = Pv + 8 (Zi, yi, Zj) (e = (0, I . . . ,0,)) 

cl (.t. y. z ) = I$‘) + e(“) + . . . + cm c 1’ a’ 3 P P w 

~(P( + qi) + 2 Sj - ’ = r, (‘) = (P191s,“‘Pk?ksh - ‘) 
Pi > ‘9 Qi >, 0, 'j >/O, b> 0, apr = const >, 0 - are integers 

P = IX Pi (sis + Yi’)l”‘, pi =conat>O 

(r= 1, 2,..., 61; p= I, 2,.... ??I) 

The following characteristic estimates for homogeneous rth order forms are valid for 

functions of the form (1.8): 

Here and below we assume that 
6 (0, 0, 0) = limo (zi, yi, 0) = 0 (Zi ---, 0, I/i .+ 0) 

The constants LX;’ and the integers 6r, acLr will be chosen in accordance with the form 

of system (1.2). (1.3) and the possibility of its stabilization. 

Let us transform system (1.2). (1.3) in such a way that the equations for the noncritical 

variables in the transformed system do not contain terms of order lower than N (A’>1 is 

an integer) which depend only on Xi, Yil zj. This can be done with the aid of the trans- 

formation v0 = & -I- y.a (Zi, Yi’ “j) (1.9) 

where 4, are the new variables. To determine the functions x,, (Zi, Yi, Zj) in accordance 

with the Liapunov method we consider the system of partial differential equations 

r, ~'j('i, ?/i. zj9 ', u, +' ~ [-"iYi + xi(zi, Yi' 'j's ')I+ 
j i 

+z + '*("i* Yi9 'jSx* uc)l =Aox + BO" + ’ taizi + b,Y,)+ 

+ I: cjzj + 8 (Zi, yi. z. 3’ x, q (1.10) 

where x -is an n-dimensional vector with the components x0. We shall seek the solution 
of this system in the form of the formal series 

x,(5i,Yi,z.)=x~)+x~*)+... t (1.11) 

where xg) are functions of the type (1.8), i.e. 

(l.iZ) 

L-1 r 

bJ1+ q1+ a+ '*'+P&+q~-kS,, - Z=r; (z)= (mm. ..pkqks,- 1)) 
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Substituting these series and control (1.6). (1. 8) into (1. lo), and then equating the v th 

order terms (for which p1 + (11 + sI . . . + pk f yk + sh - 1 = V) in the left and right 
sides of the resulting equations, we obtain the following system for determining the vec- 
tor function x(“‘: 

i 

ax(“) 
Xhi ‘i 

&JV’ 
aY. - Yi ax. 1 

= Cd”) + 4”) (Xi, Yi, zj, &)) (1.13) 

The components ‘c(ov) are vec’t,r function:, ,(“) are v th order homogeneous functions 
of the variables xi, Yi, zj of the (1.8) type. For example, for Y == 1 we have 

0 = z ((I i2i + biYi) + z cjzj + Bo@) 

The functions ,(“) for v > 1 depend onlv on those x;’ for which y < v. Since we 
assume that all the functions XC) for Y < v have already been computed, it follows 

that the functions up) are known. 
Isolating the terms with equal factors p-’ in the functions xp) and T,“! we can 

express them in the form b,” X(iY 
(1.1’0 

b-1 

Here z,, > 0 are integers ; W), xc are (Y + 1) -th order forms in zi, yi, zj. 
Substituting (1.14) into (1.13) and recalling that 

we obtain 

To determine the numbers b,, we first set 
k-1 s=1 l--l 

b,, = b,, = . . . = b,, = max [alv, fisvr . . . , nnvl 

in (1.12), (1.15) and then obtain specific values for these constants by equating the 

terms with equal factors p -’ in the right and left sides of Eqs. (1.15). This gives us the 
following equations for determining the vector functions x(“+“~ : 

( 
ax”+” Y ax”“‘” 

“i ‘i - --Yias ayi i > 
= cxPtJ)., + p+o, (1.16) 

This system is particular case (32) of n]. Sect. 30 (see also (39.1) of 131, Sect. 39). 
By virtue of the Liapunov theorem fl, 31 system (1.16) has a unique solution for the 

forms xJ;J+‘)“. This solution can be obtained by the method of undetermined coefficients ; 
this yields linear nonhomogeneous algebraic systems for determining the coefficients of 
the forms in question. Thus, Eqs. (1.16) make it possible to determine successively the 
forms x:+~)’ (v = 1, 2 , . ..) (and therefore the functions xr) (1.12)). 

At this point we can show that if 
P = l/’ (aix? + PiY~) 

is substituted into control (1.6) - (1.8). then it is necessarily the case that ai = pi. 
Let us suppose that all the functions X, (xi, yi, Zj) of up to a prescribed order N - 1 

have aheady been computed, i. e. that 
x0 (Xi, yi. z.)= X’ol’ + $1 + . . + ?cg+l I 

(1.17) 
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are known. 

Substituting control (1.6)-&S) into Eqs. (1.2) (1.3) and transforming this system in 

accordance with formulas (1.9). (1.17). we obtain 

d% 

N 

-= ‘,‘, + C ‘(,p’ (‘i, Yi’ “j) + ~~,,, (‘i, yi, zj, 5) 
dt 

r=2 

(1.18) 

4 
__ = cl + ‘+ (xi9 Yip “j* E;) dt 

(S-P = (B1+,..., i-in*)) 

(p-1,2 ,..., h; a-1.2 ,,.. k) 

Here the functions (pP, Ipio, qza, Q, * are of an order of smallness not lower than the 

second in zi, yi, zp E;,, . 

The functions ‘pa (xi, vi, zj, O), $ia (xi, yi, zi, 0), q2= (xi, yi, zjl 0) satisfy the Lipschitz 

condition with an infinitely small constant and the estimates 

) VP (Xi, Y,* Zj, 0) 1 Q Ap 11 X IIN+lv 1 $I= t5i9 Yi# ‘j* ‘1 1 d B,, II X IIN+l 

I $2a (xi, yip Zj* 0) 1 d B,, 11 X (IN+l s $>O. Bla > 0, B,, > 0 (const) 

As a result of our choosing transformation(1.9). (1.17), the expansion of the function 
8; (5:. 7: . ,.;, 0) begins with terms of order not lower than N. 

Fulfillment of these conditions ensures the applicability of Theorem 2.2 of [4]. In 

other words, the problem of stability of the zero solution of system (1.18) is equivalent 

to the problem of stability of the zero solution of the truncated svstem 

$Li 
dx 

N 

llr’ txi9 Yi, zj) 2 = - h,Ya + 2 Hc) (Xiv Yiv Zj) 
dt 

T==2 7.4 

dYo, 
N 

- = h,x, + ~ KP’~i, Yi' Zj) 
dt 

r=2 

(1.19) 

We can obtain system (1.19) from system (1.2) by setting control (1.6) - (1. 8) into 

the latter, replacing the components of the vector z in the resulting relations by the 

components of the vector x (1.17). and retaining terms of order up to N only. 

2. let us consider the stability of truncated system (1.19). We can rewrite the system 
as dz. 

3 = Ry) (xi, yi, Zi) + I?:?) (Xi* ?/it Zj) + . . . dt 

dx. 
--L = - hiyi + H,(” (xi, yip zj) + Hi’) (xi, yi, zj) + . . . dt (2.1) 

dYi 
- = h.X. + Ki2j (5. y dt 1% 1’ i’ Zj)+ K1” (xi, yi, Zj) f . . . 

where R3(‘), H!‘) 1 f K$‘) is the set of rth order terms of the (I. 8) type whose coefficients 
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depend in a certain way on the coefficients of control (1.6) - (1.8). 

Kamenkov [5] investigated system (2.1) in the class of analytic functions by a method 
requiring a large number of preliminary transformations. 

We shall confine our attention to the case where the possibility of stabilizing system 
(2.1) is determined by the second-order terms RI 2), Hf2f JCi2). fn this case controi (l-6)- 

(1.8)need contain first-order terms only. Moreover, if we limit ourse!ves to the values 
1 = --1, 0, we need only consider the control 

up = u; (v) + 2 a~‘?z~Yl9’ z;’ . . . z&;kz;" + or;+ 

1 

@l-t- 91+a+ *~.+~k+~,+s,=i; (~l)=(~lql~I...~k~kS,,of) (2.2) 

(z2)=(000...0001) 

Such a choice of control (‘2.2) yields 

fi@J_--tB~ (li, Yii, Zj) P + ry) (Xi, Yi, Zj), 
I 

Wt”) = Cpj” (Zi, Y,, Zj) P + qpi”) lzi2 yi* 'jf (2.3) 

~(2) = v!lj z I (Z ** ?/i* Zj:j) P + 9:“’ (5i$ Yi* “j) 

Here ~\a), ‘pi”, I#$“) (6 = 1, 2) are 6 th order forms in xiv yir rj. The coefficients of 
these forms depend in a certain way on the coefficients of control (2.2). 

Let us consider the Liapunov function of the form 

2V-1= Z ($t + Y/iz) + X Zj2 + 2w (5i* Yi, “j) 

where W is a third-order form in zjr yi, 21. We shall attempt to choose this form in 

such a way that the total derivative of the function V is of fixed sign by virtue of Eqs. 

C2.lh This derivative can he written as 

where the ellipsis represents terms of order higher than the third. 

Making use of expressions (d. 3). we can write 

dV 8W 
7 = Cp (xi* Yil “j) P + cf, (‘i? Yi’ Zj) -j- B hi CIT.------ - 

i ’ aYi 

Here 9 is a quadratic form and 4, is a third-order form in zi, Yi, zj. The coefficients 
of the form W can be chosen in such a way as to satisfy the equation 

(2.5) 

(a...=oiij-ajii; i,j=l,s ,..., h) al* 
In determining w (zi, Yi, tj) it is sufficient to isolate from the set of third-order 

terms of Q (zt, Yi, z,.) (2.4) those terms which depend only on the critical variables z; 
written out in the right side of Eqs. (2.5). 

The derivative dV f dt now becomes h 

(2.6) 

where the ellipsis represents terms of order higher than the third. 
The quadratic form cp (pi, YE, Zj) can be written as 
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ak+h 

Cp fzit Yi* "j) = 2 dap91r)p 
Q,D=d 

Here 
Isi-1 = =i ) ‘lli -= Yi ) %k+i ="j 

We denote the principal minors of its discriminant by 

A”” =T- (d+J (d*j=dji) (L,i=i,2 (..., v; v=i,2 ,...( 2k+h) 

By the Sylvester criterion, form (2.7) is positive-definite if and only if 

(2.7) 

A”“>0 (WC 1, 2,..., zkth) (2.8) 

and negative-definite if and only if 

A 2p-1,2P-l< 0, A2P,2PB0 (~=a, 2 ,..., k+h,) 

(hl = llzh for h = 21; h, = 1/z (h + 1) for h = 21 + 1) 

(2.9) 

We now require that the coefficients aapY (2.6) satisfy the conditions 

1 aapy / <e (e > 0 is sufficiently small) (2.10) 

According to Lemma 3 of [3], Sect. 7, fulfillment of condition (2. 8) or (2.9) and(2.10) 
implies that dV / dt (2.6) is of fixed sign. 

The function V is positive-definite in a sufficiently small neighborhood of xi = 0, 

yi = 0, Zj = 0 . The Liapunov theorem on asymptotic stability and the first theorem 
on instability imply the following: if inequalities (2.9) and (2.10) are fulfilled, then 
the unperturbed motion of system (2.1) is asymptotically stable ; if inequalities (2. 8) 
and (2.10) are fulfilled, then the unperturbed motion is unstable. By virtue of the reduc- 

tion principle (Theorem 2.2 of [4] ), this means that the same statement is valid for the 
unperturbed motion of system (1.18) and thereby for initial system (1.2) , (1.3). 

The following theorem summarizes the above results. 
Theorem 2.1 (1). Stabilization of the unperturbed motion of system (2. l), 

and therefore of the unperturbed motion of system (1.2). (1.3) is ensured by control(2.2) 
provided the coefficients aLL), ofp) can be chosen in such a way that inequalities (2.9) 
and (2.10) are satisfied. 

( 2 ). If conditions (2.8) and (2.10) are fulfilled for any choice of coefficients a~‘), 
a:‘) , then system (2.1) cannot be stabilized by control (2.2). 
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